
Fine-Grained
Checkpointing with

In-Cache-Line Logging
Nachshon Cohen David T. Aksun

Hillel Avni James R. Larus

• DRAM-like performance, disk-like durability

• Data is retained after shutting down the machine

• Planned or unexpected

Background: Non-Volatile Memory

Challenge: Cache Reorder Writes

Data structures in
NVM

Cache

Application

• Challenge: design a durable data structure for NVM

• Subject to: cache can reorder writes

• And: without reducing performance a lot

Durable Data Structures

• Log modifications (undo log: old value, redo log: new value)

• Explicitly force a write back (flush) modified cache lines

• Both log and data

Existing Approaches

Access to memory
is expensive

Can we do better?

• Algorithm

• Periodic persistency

• In Cache Line Log (InCLL): our novel contribution

• Zero explicit writes back on the fast path of the data
structure

Our Approach

• Flush entire cache infrequently (e.g., every 64ms)

• E.g., x86’s wbinvd instruction

Periodic Persistency

Epoch 1w
b

Epoch 2w
b

Epoch 3w
b

Epoch 4w
b

Epoch 5w
b

• Flush entire cache infrequently (e.g., every 64ms)

• E.g., x86’s wbinvd instruction

• Return to a consistent state at the end of an epoch

• Using undo log

Periodic Persistency

Epoch 1w
b

Epoch 2w
b

Epoch 3w
b

Epoch 4w
b

Epoch 5w
b

Roll
back

• put(key: 10, value: 12)

Ensuring Consistent State: B+ Tree

• put(key: 10, value: 12)

• node.value[0] = 12

Ensuring Consistent State: B+ Tree

11 1 2

12 1 2

ModifyDataStructureNode

1.Log <- OldValue

2.WriteBack(Log)

3.Node <- NewValue

Can we avoid write backs?

Concurrency

Modify multiple variables is hard

Requires a lock or TM

Modify a single variable is easy

Fetch and Add

Compare and Swap

In Cache Line Log

B+ node 11

Log

• A cache line is evicted to memory atomically

• Embed the log inside the same cache line as modified node

• No explicit write-back

In Cache Line Log

B+ node 11

Log

12

• A cache line is evicted to memory atomically

• Embed the log inside the same cache line as modified node

• No explicit write-back

How In Cache Line Log Works

Cache 1112

1112

11No write back

Implicit
write back

How In Cache Line Log Works

Cache 1112

1112

11No write back

Implicit
write back

In Cache Line Log

enables recovery

without explicit write backs

14

• Capacity is very limited

In Cache Line Log: Drawback

11B+ node 11

Log

1112 15 20🤔11

• Node is modified two times

• Probably it will be modified again during the epoch

• Log entire node, explicit write back

• Subsequent modifications (during same epoch) do not
require logging 

External Undo Log at Node Granularity

• First modification: use InCLL

External Undo Log + In Cache Line Log

1112

111

1140

1170

InCLL

Node1

Node2

Node3

Node5

• First modification: use InCLL

External Undo Log + In Cache Line Log

1112

111

1140

1170

12 14 15 20

• 2+ modifications: use
external log

11

External
log

InCLL

On average,
1/#modifications

explicit write backs

Node1

Node2

Node3

Node5

• First modification: use InCLL a

External Undo Log + In Cache Line Log

• 2+ modifications: use
external log

Effective when
modifications are sparse
•Data structure is large
•Key distribution is uniform

Effective when
modifications are dense
•Splitting a B+ node
•Modify a range of values

1314161512

• Best case:

• A single popular key

• Key distribution is skewed

External Undo Log + In Cache Line Log

11

Log

• Worst case:

• Two keys modified exactly
once

• One explicit write back
per two modifications

Many additional details, see paper
Fine-Grain Checkpointi

ng with In-Cache-Lin
e

Logging

Nachshon Cohen
Amazon

Haifa, Israel

nachshonc@
gmail.com

David T. Aksun
EPFL

Lausanne, Sw
itzerland

david.aksun@
epfl.ch

Hillel Avni
Huawei

Tel Aviv, Israe
l

hillel.avni@huawei.com

James R. Larus
EPFL

Lausanne, Sw
itzerland

james.larus@epfl.ch

Abstract

Non-Volatile M
emory o�ers the poss

ibility of implementing

high-performance, durable
data structure

s. However, ac
hiev-

ing performance comparable towel
l-designed dat

a structures

in non-persisten
t (transient) m

emory is di�cult, primarily

because of the
cost of ensuri

ng the order i
n which memory

writes reach N
VM. Often, this re

quires �ushing
data to NVM

and waiting a full
memory round-trip time.

In this paper, w
e introduce two new techniques: F

ine-

Grained Chec
kpointing, wh

ich ensures a con
sistent, quickl

y

recoverable data structure in NVM after a system failure,

and In-Cache-Line
Logging, an undo-logging

technique tha
t

enables recov
ery of earlier stat

e without req
uiring cache-

line �ushes in
the normal case. We implemented these tech-

niques in the Masstree data s
tructure, making it persis

tent

and demonstrating the
ease of applyi

ng them to a highly op-

timized system and their low
(5.9-15.4%) ru

ntime overhead

cost.

CCS Concepts
• Hardware→ Non-volatile

memory;

Keywords non-volatile m
emory, NVM, durable data

struc-

tures, in-cache
-line logging,

InCLL, �ne-gr
ain checkpointing

ACM Reference Fo
rmat:

Nachshon Cohen, David
T. Aksun, Hill

el Avni, and James R. Larus.

2019. Fine-Gr
ain Checkpointin

g with In-Cache-Line
Logging. In

2019 Architec
tural Support

for Programming Language
s and Oper-

ating Systems (ASPLOS ’19
), April 13–17

, 2019, Provide
nce, RI, USA.

ACM,NewYork, NY, USA
, 14 pages. h�p

s://doi.org/10
.1145/3297858

.

3304046

Work done while th
e �rst author

was a postdoc
at EPFL.

Permission to make digital or
hard copies of part

or all of this w
ork for

personal or cl
assroom use is granted

without fee p
rovided that c

opies are

not made or distribu
ted for pro�t or co

mmercial advanta
ge and that copies

bear this notic
e and the full citatio

n on the �rst page.
Copyrights fo

r third-

party components of thi
s work must be honore

d. For all othe
r uses, contact

the owner/au
thor(s).

ASPLOS ’19, A
pril 13–17, 201

9, Providence,
RI, USA

© 2019 Copyrigh
t held by the owner/aut

hor(s).

ACM ISBN 978-1-4503-62
40-5/19/04.

h�ps://doi.or
g/10.1145/329

7858.3304046

1 Introduction

Non-Volatile M
emory (NVM) is fast, byte-a

ddressable mem-

ory that retain
s its contents a

fter a power fa
ilure or a syste

m

crash. New technologies,
such as 3D-XPoint

[15], PCM [17,

25], STT-RAM
[12], and ReRAM [1, 29], promise NVM at

low cost, thus blur
ring the line b

etween durable storag
e and

main memory. One important use o
f NVM is enabling the

rapid restart of a fa
iled system. Restarting an existing ma-

chine typicall
y incurs a signi�

cant delay due to the nee
d to

read data from durable media such as a disk or SSD, parse
it,

and rebuild internal data
structures. NV

M can avoid most

of these resta
rt costs. Since

NVM is byte-addres
sable, it is

possible to sto
re e�cient, pointer-

based structur
es, such as

B+ trees or hash m
aps, directly in

NVM. After a failur
e, these

structures rem
ain in NVM, enabling the

system to resume

immediately after rebootin
g and recovering da

ta [8].

The main challenge in designing dur
able data stru

ctures

for NVM is that proces
sor caches are

(and are likely to re-

main) transient
. During a pow

er failure, all m
emory writes

that were not
propagated from cache to NVM will be lost.

The processor
memory system also complicates the ta

sk of

writing cache
lines to NVM

in a consistent m
anner. Cache

lines are not w
ritten back to memory (NVM) in the order in

which an application modi�es them, but rather ac
cording to

a memory system’s low-level an
d frequently undocumented

cache replace
ment policy. Th

is creates a w
ell-studied ch

al-

lenge: how to ensure that
the durable co

py of a data str
ucture

is well-formed (consistent) af
ter a crash, ev

en though NVM

contains a mixture of stale
and new cache lines?

Most NVM systems require prog
rammer-speci�ed tr

ans-

actions to ens
ure that a gro

up of memory writes either
all

reach NVM or none of them do. Typically,
a change to a

structure is �r
st logged (usin

g either a redo
or undo log) i

n

NVM and then applied to the structure.
The log provides

su�cient information for the recovery process to restore

a structure to
a consistent s

tate, regardle
ss of whether

all

structure modi�cations re
ached NVM.

However, the
system must ensure that the log is com-

pletely �ushed
to NVM before the stru

cture itself is m
odi�ed.

ar
X

iv
:1

90
2.

00
66

0v
1

 [c
s.O

S]
 2

 F
eb

 2
01

9

• Incorporated into MassTree [Mao, Kohler, Morris, EuroSys’12]

• B+ Tree/Trie with excellent performance

• Also made MassTree’s allocator durable with InCLL

• Avoid dangling pointers and durable memory leaks

• Workloads

• Ycsb A (50% writes), B (5% writes), C (0% writes), E (scans)

• Key distribution: Uniform and Zipfian

Implementation and Evaluation

Performance vs. Workload

15% 14% 12%

8%

10%

6% 8%

7%

Performance vs. NVM Latency

• Explicit write backs (cache line flushes) are expensive

• Use In Cache Line Log

• Place log inside cache line and avoid explicit write backs

• Plus: Periodic persistence, External log for second
modification

• Durability with small overhead

Conclusion

• Explicit write backs are expensive

• Use In Cache Line Log

• Place log inside cache line and avoid explicit write backs

• Plus: Periodic persistence, External log for second
modification

• Durability with small overhead

Conclusion

Questions?

